Solution to Homework Assignment No. 4

1. (a) $\left\{\begin{array}{l}C=0 \\ C=8 \\ C=8 \\ C=20\end{array} \Longrightarrow\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right][C]=\left[\begin{array}{c}0 \\ 8 \\ 8 \\ 20\end{array}\right] \Longrightarrow \boldsymbol{A}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \quad \widehat{\boldsymbol{x}}=[C], \quad \boldsymbol{b}=\left[\begin{array}{c}0 \\ 8 \\ 8 \\ 20\end{array}\right]\right.$.

$$
\boldsymbol{A}^{T} \boldsymbol{A} \widehat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b} \Longrightarrow\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right][C]=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right] \Longrightarrow C=9
$$

Figure 1: The blue line is the horizontal line and the red segments are the errors.
(b) Let

$$
\boldsymbol{a}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right] .
$$

Applying the formula for projection onto a line gives

$$
\widehat{x}=\frac{\boldsymbol{a}^{T} \boldsymbol{b}}{\boldsymbol{a}^{T} \boldsymbol{a}}=\frac{\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
8 \\
8 \\
20
\end{array}\right]}{\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]}=\frac{36}{4}=9
$$

We can obtain

$$
\boldsymbol{p}=\widehat{x} \boldsymbol{a}=\left[\begin{array}{l}
9 \\
9 \\
9 \\
9
\end{array}\right], \quad \boldsymbol{e}=\boldsymbol{b}-\boldsymbol{p}=\left[\begin{array}{c}
-9 \\
-1 \\
-1 \\
11
\end{array}\right]
$$

Note that \boldsymbol{p} and \boldsymbol{e} are orthogonal since

$$
\boldsymbol{p}^{T} \boldsymbol{e}=\left[\begin{array}{llll}
9 & 9 & 9 & 9
\end{array}\right]\left[\begin{array}{l}
-9 \\
-1 \\
-1 \\
11
\end{array}\right]=-81-9-9+99=0
$$

Also

$$
\|\boldsymbol{e}\|=\sqrt{(-9)^{2}+(-1)^{2}+(-1)^{2}+11^{2}}=2 \sqrt{51}
$$

The result here is the same as that in (a).
2. $\left\{\begin{array}{l}C+D(-2)=4 \\ C+D(-1)=2 \\ C+D(0)=-1 \\ C+D(1)=0 \\ C+D(2)=0\end{array} \quad \Longrightarrow \boldsymbol{A}=\left[\begin{array}{cc}1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2\end{array}\right], \quad \widehat{\boldsymbol{x}}=\left[\begin{array}{l}C \\ D\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}4 \\ 2 \\ -1 \\ 0 \\ 0\end{array}\right]\right.$.

We can have

$$
\boldsymbol{A}^{T} \boldsymbol{A}=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
-2 & -1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
5 & 0 \\
0 & 10
\end{array}\right]
$$

and

$$
\boldsymbol{A}^{T} \boldsymbol{b}=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
-2 & -1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
4 \\
2 \\
-1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{ll}
5 & -10
\end{array}\right]
$$

Therefore,

$$
\boldsymbol{A}^{T} \boldsymbol{A} \widehat{\boldsymbol{x}}=\boldsymbol{A}^{T} \boldsymbol{b} \Longrightarrow\left[\begin{array}{cc}
5 & 0 \\
0 & 10
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=\left[\begin{array}{ll}
5 & -10
\end{array}\right] \Longrightarrow C=1, \quad D=-1
$$

And the best line is $1-t$.
3. Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ denote the independent columns and $\boldsymbol{q}_{\mathbf{1}}, \boldsymbol{q}_{\boldsymbol{2}}, \boldsymbol{q}_{\mathbf{3}}$ denote the desired orthonormal ones. By the Gram-Schmidt process, we can have

$$
\begin{aligned}
\boldsymbol{q}_{1} & =\frac{\boldsymbol{a}}{\|\boldsymbol{a}\|} \\
\boldsymbol{q}_{2} & =\frac{\boldsymbol{b}-\left(\boldsymbol{q}_{1}^{T} \boldsymbol{b}\right) \boldsymbol{q}_{1}}{\left\|\boldsymbol{b}-\left(\boldsymbol{q}_{1}{ }^{T} \boldsymbol{b}\right) \boldsymbol{q}_{1}\right\|} \\
\boldsymbol{q}_{3} & =\frac{\boldsymbol{c}-\left(\boldsymbol{q}_{1}^{T} \boldsymbol{c}\right) \boldsymbol{q}_{1}-\left(\boldsymbol{q}_{2}{ }^{T} \boldsymbol{c}\right) \boldsymbol{q}_{2}}{\left\|\boldsymbol{c}-\left(\boldsymbol{q}_{1}{ }^{T} \boldsymbol{c}\right) \boldsymbol{q}_{1}-\left(\boldsymbol{q}_{\mathbf{2}}{ }^{T} \boldsymbol{c}\right) \boldsymbol{q}_{\mathbf{2}}\right\|}
\end{aligned}
$$

Now $\boldsymbol{a}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \boldsymbol{b}=\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right], \boldsymbol{c}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$. Substitute $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and we can get $\boldsymbol{q}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, $\boldsymbol{q}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \quad \boldsymbol{q}_{3}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. Therefore,

$$
\boldsymbol{A}=\left[\begin{array}{lll}
\boldsymbol{q}_{1} & \boldsymbol{q}_{2} & \boldsymbol{q}_{3}
\end{array}\right]\left[\begin{array}{ccc}
\boldsymbol{q}_{\mathbf{1}}{ }^{T} \boldsymbol{a} & \boldsymbol{q}_{1}{ }^{T} \boldsymbol{b} & \boldsymbol{q}_{\mathbf{1}}{ }^{T} \boldsymbol{c} \\
0 & \boldsymbol{q}_{\mathbf{2}}{ }^{T} \boldsymbol{b} & \boldsymbol{q}_{\mathbf{2}}{ }^{T} \boldsymbol{c} \\
0 & 0 & \boldsymbol{q}_{\mathbf{3}}{ }^{T} \boldsymbol{c}
\end{array}\right]
$$

which gives

$$
\left[\begin{array}{lll}
1 & 2 & 4 \\
0 & 0 & 5 \\
0 & 3 & 6
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 4 \\
0 & 3 & 6 \\
0 & 0 & 5
\end{array}\right] .
$$

4. It can be checked that the columns of \boldsymbol{Q} are orthogonal if $c \neq 0$. We only have to find c for the lengths of each column vector to be one. We can have $c^{2}+(-c)^{2}+$ $(-c)^{2}+(-c)^{2}=1$, which gives $c= \pm 1 / 2$. Here we choose $c=1 / 2$.
Now the first column $\boldsymbol{q}_{1}=\frac{1}{2}\left[\begin{array}{c}1 \\ -1 \\ -1 \\ -1\end{array}\right]$, and the second column $\boldsymbol{q}_{\boldsymbol{2}}=\frac{1}{2}\left[\begin{array}{c}-1 \\ 1 \\ -1 \\ -1\end{array}\right]$. The projection of $\boldsymbol{b}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$ onto the first column gives

$$
\boldsymbol{p}=\left(\boldsymbol{q}_{1}^{T} \boldsymbol{b}\right) \boldsymbol{q}_{\mathbf{1}}=-\boldsymbol{q}_{\mathbf{1}}=\frac{1}{2}\left[\begin{array}{c}
-1 \\
1 \\
1 \\
1
\end{array}\right] .
$$

The projection of $\boldsymbol{b}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$ onto the first two columns yields

$$
\begin{aligned}
\boldsymbol{p}^{\prime} & =\left(\boldsymbol{q}_{\mathbf{1}}{ }^{T} \boldsymbol{b}\right) \boldsymbol{q}_{\mathbf{1}}+\left(\boldsymbol{q}_{\mathbf{2}}{ }^{T} \boldsymbol{b}\right) \boldsymbol{q}_{\mathbf{2}}=-\boldsymbol{q}_{1}-\boldsymbol{q}_{\mathbf{2}} \\
& =\frac{1}{2}\left[\begin{array}{c}
-1 \\
1 \\
1 \\
1
\end{array}\right]+\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right] .
\end{aligned}
$$

5. We can perform some row operations on \boldsymbol{A} without changing the determinant:

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
1 & -4 & 5 \\
2 & -8 & 10 \\
3 & -12 & 15
\end{array}\right] \Longrightarrow \boldsymbol{A}^{\prime}=\left[\begin{array}{ccc}
1 & -4 & 5 \\
0 & 0 & 0 \\
3 & -12 & 15
\end{array}\right] \quad \text { (row } 2 \text { subtracts } 2 \cdot \text { row } 1 \text {) }
$$

We therefore have

$$
\operatorname{det} \boldsymbol{A}=\operatorname{det} \boldsymbol{A}^{\prime}(\text { by Rule } 5)=0(\text { by Rule } 6) .
$$

As for det \boldsymbol{K}, we first observe that $\boldsymbol{K}^{T}=-\boldsymbol{K}$. Therefore,

$$
\operatorname{det} \boldsymbol{K}=\operatorname{det} \boldsymbol{K}^{T}(\text { by Rule } 10)=\operatorname{det}(-\boldsymbol{K})=(-1)^{3} \operatorname{det} \boldsymbol{K}(\text { by Rule } 3)
$$

which gives

$$
\operatorname{det} \boldsymbol{K}=0
$$

6. Utilizing the rules of determinants, we can have

$$
\begin{aligned}
\operatorname{det} \boldsymbol{L} & =1 \cdot 1 \cdot 1=1 \\
\operatorname{det} \boldsymbol{U} & =3 \cdot 2 \cdot(-1)=-6 \\
\operatorname{det} \boldsymbol{A} & =\operatorname{det} \boldsymbol{L} \cdot \operatorname{det} \boldsymbol{U}=1 \cdot(-6)=-6 .
\end{aligned}
$$

Since

$$
\boldsymbol{L}^{-1} \boldsymbol{L}=\boldsymbol{I} \text { and } \boldsymbol{U}^{-1} \boldsymbol{U}=\boldsymbol{I}
$$

we can have

$$
\operatorname{det} \boldsymbol{L}^{-1}=1 / \operatorname{det} \boldsymbol{L}=1
$$

and

$$
\operatorname{det} \boldsymbol{U}^{-1}=1 / \operatorname{det} \boldsymbol{U}=-1 / 6
$$

Therefore,

$$
\operatorname{det}\left(\boldsymbol{U}^{-1} \boldsymbol{L}^{-1}\right)=\operatorname{det} \boldsymbol{U}^{-1} \cdot \operatorname{det} \boldsymbol{L}^{-1}=-1 / 6
$$

Also

$$
\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}
$$

which gives

$$
\boldsymbol{U}^{-1} \boldsymbol{L}^{-1} \boldsymbol{A}=\boldsymbol{U}^{-1} \boldsymbol{L}^{-1} \boldsymbol{L} \boldsymbol{U}=\boldsymbol{I}
$$

Hence,

$$
\operatorname{det}\left(\boldsymbol{U}^{-1} \boldsymbol{L}^{-1} \boldsymbol{A}\right)=\operatorname{det} \boldsymbol{I}=1
$$

7. (a) Let $E_{n}=\left|\boldsymbol{A}_{\boldsymbol{n}}\right|$. Thus $\boldsymbol{A}_{\boldsymbol{n}}$ is an n by n matrix. First observe that, for $n \geq 3$,

$$
E_{n}=\left|\begin{array}{ccccc}
1 & 1 & 0 & \cdots & 0 \\
1 & & & & \\
0 & & & \boldsymbol{A}_{\boldsymbol{n}-1} \\
\vdots & & & & \\
0 & & &
\end{array}\right|=\left|\begin{array}{ccccc}
1 & 1 & 0 & 0 \cdots & 0 \\
1 & 1 & 1 & 0 & \cdots \\
0 & 1 & & & 0 \\
0 & 0 & & \boldsymbol{A}_{\boldsymbol{n}-2} & \\
\vdots & \vdots & & & \\
0 & 0 & & &
\end{array}\right| .
$$

Applying the cofactor formula for the first row, we can have

$$
\begin{aligned}
E_{n} & =1 \cdot(-1)^{1+1}\left|\boldsymbol{A}_{\boldsymbol{n - 1}}\right|+1 \cdot(-1)^{1+2}\left|\begin{array}{ccccc}
1 & 1 & 0 & \cdots & 0 \\
0 & & & \\
0 & & \boldsymbol{A}_{\boldsymbol{n}-\mathbf{2}} \\
\vdots & & \\
0 &
\end{array}\right| \\
& =E_{n-1}-1 \cdot(-1)^{1+1}\left|\boldsymbol{A}_{\boldsymbol{n}-\mathbf{2}}\right| \text { (apply the cofactor formula for the first column) } \\
& =E_{n-1}-E_{n-2} .
\end{aligned}
$$

(b) We recursively use the result in (a) and can obtain

$$
\begin{aligned}
& E_{3}=E_{2}-E_{1}=0-1=-1 \\
& E_{4}=E_{3}-E_{2}=-1-0=-1 \\
& E_{5}=E_{4}-E_{3}=-1-(-1)=0 \\
& E_{6}=E_{5}-E_{4}=0-(-1)=1 \\
& E_{7}=E_{6}-E_{5}=1-0=1 \\
& E_{8}=E_{7}-E_{6}=1-1=0
\end{aligned}
$$

Also

$$
E_{9}=E_{8}-E_{7}=0-1=-1=E_{3}(\text { repeated })
$$

(c) Since from (b) we can find that the sequence $\left\{E_{n}\right\}$ is periodic of period 6 , we have $E_{100}=E_{4}=-1$.
8. We first write

$$
\operatorname{det} \boldsymbol{A}=\left|\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right|=\left|\begin{array}{cccc}
a_{11} & a_{12} & 0 & 0 \\
a_{21} & a_{22} & a_{23} & 0 \\
0 & a_{32} & a_{33} & a_{34} \\
0 & 0 & a_{43} & a_{44}
\end{array}\right| .
$$

Applying the big formula, we can split det \boldsymbol{A} into:

$$
\begin{aligned}
\operatorname{det} \boldsymbol{A}= & a_{11} a_{22} a_{33} a_{44}\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|+a_{11} a_{22} a_{43} a_{34}\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right|+a_{11} a_{32} a_{23} a_{44}\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right| \\
& +a_{21} a_{12} a_{33} a_{44}\left|\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right|+a_{21} a_{12} a_{43} a_{34}\left|\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right| \\
= & 2 \cdot 2 \cdot 2 \cdot 2 \cdot 1+2 \cdot 2 \cdot(-1) \cdot(-1) \cdot(-1)^{1} \\
& +2 \cdot(-1) \cdot(-1) \cdot 2 \cdot(-1)^{1}+(-1) \cdot(-1) \cdot 2 \cdot 2 \cdot(-1)^{1} \\
& +(-1) \cdot(-1) \cdot(-1) \cdot(-1) \cdot(-1)^{2}
\end{aligned}
$$

which is equal to

$$
16-4-4-4+1
$$

